
Identifying the full set of transcripts — including large 
and small RNAs, novel transcripts from unannotated 
genes, splicing isoforms and gene-fusion transcripts — 
serves as the foundation for a comprehensive study of  
the transcriptome. For a long time, our knowledge  
of the transcriptome was largely derived from gene 
predictions and limited EST evidence and has there-
fore been partial and biased. Recently, however, whole- 
transcriptome sequencing using next-generation 
sequencing (NGS) technologies, or RNA sequencing 
(RNA-seq), has started to reveal the complex landscape 
and dynamics of the transcriptome from yeast to human 
at an unprecedented level of sensitivity and accuracy1–4. 
Compared with traditional low-throughput EST 
sequencing by Sanger technology, which only detects 
the more abundant transcripts, the enormous sequencing  
depth (100–1,000 reads per base pair of a transcript) of 
a typical RNA-seq experiment offers a near-complete 
snapshot of a transcriptome, including the rare tran-
scripts that have regulatory roles. In contrast to alterna-
tive high-throughput technologies, such as microarrays, 
RNA-seq achieves base-pair-level resolution and a 
much higher dynamic range of expression levels, and 
it is also capable of de novo annotation1,2. Despite these 
advantages, sequence reads obtained from the common 
NGS platforms, including Illumina, SOLiD and 454, are 
often very short (35–500 bp)5. As a result, it is neces-
sary to reconstruct the full-length transcripts by tran-
scriptome assembly, except in the case of small classes 
of RNA — such as microRNAs, PIWI-interacting RNAs  
(piRNAs), small nucleolar (snoRNAs) and small inter-
fering (siRNAs) — which are shorter than the sequencing  
length and do not require assembly.

Reconstructing a comprehensive transcriptome from 
short reads has many informatics challenges. Similar  
to short-read genome assembly, transcriptome assembly 
involves piecing together short, low-quality reads. Typical 
NGS data sets are very large (several gigabases to tera-
bases), which requires computing systems to have large 
memories and/or many cores to run parallel algorithms. 
Several short-read assemblers have been developed to 
tackle these challenges6–9, including Velvet6, ABYSS7 and 
ALLPATHS8. Although these tools have achieved reason-
able success in the assembly of genomes9,10, they cannot 
directly be applied to transcriptome assembly, mainly 
because of three considerations. First, whereas DNA 
sequencing depth is expected to be the same across a 
genome, the sequencing depth of transcripts can vary by 
several orders of magnitude. Many short-read genome 
assemblers use sequencing depth to distinguish repetitive 
regions of the genome, a feature that would mark abun-
dant transcripts as repetitive. Sequencing depth is also 
used by assemblers to calculate an optimal set of parame-
ters for genome assembly, which would probably result in 
only a small set of transcripts being favoured in the tran-
scriptome assembly. Second, unlike genomic sequencing, 
in which both strands are sequenced, RNA-seq experi-
ments can be strand-specific. Transcriptome assemblers 
will need to take advantage of strand information to 
resolve overlapping sense and antisense transcripts11–14. 
Finally, transcriptome assembly is challenging, because 
transcript variants from the same gene can share exons 
and are difficult to resolve unambiguously. Given the 
complexity of most transcriptomes and the above chal-
lenges, exclusively reconstructing all of the transcripts 
and their variants from short reads has been difficult.
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RNA sequencing
(RNA-seq). An experimental 
protocol that uses next- 
generation sequencing 
technologies to sequence  
the RNA molecules within a 
biological sample in an effort  
to determine the primary 
sequence and relative 
abundance of each RNA.

Sequencing depth
The average number of reads 
representing a given nucleotide 
in the reconstructed sequence. 
A 10× sequence depth means 
that each nucleotide of the 
transcript was sequenced,  
on average, ten times.
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Abstract | Transcriptomics studies often rely on partial reference transcriptomes that fail to 
capture the full catalogue of transcripts and their variations. Recent advances in sequencing 
technologies and assembly algorithms have facilitated the reconstruction of the entire 
transcriptome by deep RNA sequencing (RNA-seq), even without a reference genome. 
However, transcriptome assembly from billions of RNA-seq reads, which are often very short, 
poses a significant informatics challenge. This Review summarizes the recent developments 
in transcriptome assembly approaches — reference-based, de novo and combined strategies 
— along with some perspectives on transcriptome assembly in the near future.
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Paired-end protocol
A library construction and 
sequencing strategy in which 
both ends of a DNA fragment 
are sequenced to produce 
pairs of reads (mate pairs).

Contigs
An abbreviation for contiguous 
sequences that is used to 
indicate a contiguous piece of 
DNA assembled from shorter 
overlapping sequence reads.

In the past 3 years, improvements in data quality 
and the rapid evolution of assembly algorithms have 
made it possible to address the above challenges. In 
this Review, we show how these exciting advances have 
led to a wealth of assembled transcriptomes from short 
reads15–25, and we provide practical guidelines for imple-
menting a transcriptome assembly experiment. After 
describing the experimental and informatics considera-
tions that need to be made before assembly, we discuss 
three assembly strategies: assembly based on a reference 
genome, de novo assembly and a combined approach 
that merges the two strategies. We focus on the strengths 
and weaknesses of the three strategies in the context of 
both gene-dense transcriptomes and large transcrip-
tomes with pervasive alternative splicing. Finally, we 
give some perspectives on the future of transcriptome 
assembly in light of the rapid evolution of sequencing 
technologies and high-performance computing.

Considerations prior to assembly
To ensure a high-quality transcriptome assembly, par-
ticular care should be taken in designing the RNA-seq 
experiment. The steps of a typical transcriptome assem-
bly experiment are shown in FIG. 1. In the data generation 
phase (FIG. 1a), total RNAs or mRNAs are fragmented and 
converted into a library of cDNAs containing sequencing 
adaptors. The cDNA library is then sequenced by next-
generation sequencers to produce millions to billions 
of short reads from one end or both ends of the cDNA 
fragments. In the data analysis phase (FIG. 1b), these short 
reads are pre-processed to remove sequencing errors and 
other artefacts. The reads are subsequently assembled to 
reconstruct the original RNAs and to assess their abun-
dance (‘expression counting’). Expression counting is 
not trivial for transcriptomes with extensive alternative 
splicing26: transcripts often share some exons, causing 
uncertainty as to which transcript each read belongs to. 
The accuracy and precision of gene expression counting 
are influenced by cDNA library construction methods, 
sequencing technologies and data pre-treatment tech-
niques27. Similarly, these factors can influence the quality 
of assembled transcriptomes, as discussed below.

Library construction. To increase the number of assem-
bled transcripts, especially the less abundant ones, riboso-
mal RNA (rRNA) and abundant transcripts are removed 
during the first steps of library construction. Poly(A) 
selection is very effective at enriching mRNAs in eukary-
otes, but this selection approach will miss non-coding 
RNAs (ncRNAs) and mRNAs that lack a poly(A) tail. In 
order to retain RNAs without a poly(A) tail in the assem-
bled transcriptome, rRNA contamination can instead be 
removed by hybridization-based depletion methods28,29. 
These methods increase the opportunity for the detec-
tion and assembly of rare transcripts by reducing the 
representation of rRNAs and other highly abundant tran-
scripts30, which often constitute most of the reads in RNA-
seq data sets. Note that these depletion methods may 
bias the quantification of highly abundant transcripts, 
and so if quantification is a goal of the study, then the  
sequencing of non-depleted libraries will be required.

Another consideration to make during library con-
struction, provided the starting RNA quantities are not 
limiting, is whether to eliminate the PCR amplifica-
tion step from the protocol. PCR amplification results 
in a low sequencing coverage for transcripts or regions 
within a transcript that have a high GC content31. This 
can, in turn, cause gaps in the assembled transcripts 
and can cause other transcripts to be missing from the 
assembly altogether. Amplification-free protocols have 
been developed to overcome this problem31,32. The latest 
single-molecule sequencing technologies from Helicos 
and Pacific Biosciences do not require PCR amplifica-
tion before sequencing33. The Helicos system can even 
directly sequence RNAs without cDNA library construc-
tion1,34, which should greatly reduce biases in sequencing 
coverage. However, these single-molecule technologies 
suffer from high error rates. Overall, sequencing cover-
age of the transcriptome from amplification-free pro-
tocols is more even and contiguous across transcripts, 
making it easier for assemblers to construct full-length 
transcripts across GC-rich regions of the transcriptome.

Last, the use of strand-specific RNA-seq protocols27 
aids in the assembly and quantification of overlapping 
transcripts that are derived from opposite strands of the 
genome. This consideration is especially important for 
gene-dense genomes, such as those of bacteria, archaea 
and lower eukaryotes, but it is also important for detect-
ing antisense transcription, which is common in higher 
eukaryotes.

Sequencing. The major factors to consider before 
sequencing a sample are: the choice of sequencing plat-
form, the sequencing read length and whether to use 
a paired-end protocol. All of the current NGS technolo-
gies have successfully been used to assemble transcrip-
tomes35–37, and they differ mostly in their throughput 
and cost.

The choice of sequencing technology largely depends 
on the technology to which a user has access and  
the budget constraints for sequencing. In general, the 
assembly of large and complex transcriptomes (plants 
and mammals) requires extensive sequencing and is fre-
quently done on Illumina or SOLiD platforms. The 454 
technology offers longer reads, and it can be used alone for 
small transcriptomes. Illumina, SOLiD and 454 technol-
ogy can also be combined in a ‘hybrid assembly’ strategy:  
short reads that are sequenced at a greater depth are 
assembled into contigs, and long reads are subsequently 
used to scaffold the contigs and resolve variants38,39.

For transcriptome assembly, longer reads are gener-
ally preferred, as they greatly reduce the complexity of 
the assembly. It is worth noting, however, that the prob-
lem posed by short reads can be alleviated by using a 
paired-end protocol, in which 75–150 bp are sequenced 
from both ends of short DNA fragments (100–250 bp), 
and the overlapping reads are computationally joined 
together to form a longer read40. Paired reads from 
long inserts (500–1,000 bp) offer long-range exon con-
nectivity, in a similar way to reads obtained using 454 
technology. For this reason, some assemblers, such as 
ALLPATHS, require at least two libraries with different 
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Figure 1 | The data generation and analysis steps of a typical RNA-seq experiment. a | Data generation. To generate 
an RNA sequencing (RNA-seq) data set, RNA (light blue) is first extracted (stage 1), DNA contamination is removed 
using DNase (stage 2), and the remaining RNA is broken up into short fragments (stage 3). The RNA fragments are then 
reverse transcribed into cDNA (yellow, stage 4), sequencing adaptors (blue) are ligated (stage 5), and fragment size 
selection is undertaken (stage 6). Finally, the ends of the cDNAs are sequenced using next-generation sequencing 
technologies to produce many short reads (red, stage 7). If both ends of the cDNAs are sequenced, then paired-end 
reads are generated, as shown here by dashed lines between the pairs. b | Data analysis. After sequencing, reads are 
pre-processed by removing low-quality reads and artefacts, such as adaptor sequences (blue), contaminant DNA 
(green) and PCR duplicates (stages 1 and 2). Next, the sequence errors (red crosses) are optionally removed (stage 3)  
to improve the read quality (see main text for details). The pre-processed reads are then assembled into transcripts 
(orange, stage 4) and polished by post-assembly processes to remove assembly errors (blue crosses). The transcripts are 
then post-processed (stage 5), and the expression level of each transcript is then estimated by counting the number of 
reads that align to each transcript (stage 6). rRNA, ribosomal RNA. 
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Low-complexity reads
Short DNA sequences 
composed of stretches of 
homopolymer nucleotides  
or simple sequence repeats.

Quality scores
An integer representing the 
probability that a given base  
in a nucleic acid sequence  
is correct.

k-mer frequency
The number of times that  
each k-mer (that is, a short 
oligonucleotide of length k) 
appears in a set of DNA 
sequences.

Splice-aware aligner
A program that is designed to 
align cDNA reads to a genome.

Traversing
A method for systematically 
visiting all nodes in a 
mathematical graph.

Seed-and-extend aligners
An alignment strategy that first 
builds a hash table containing 
the location of each k-mer 
(seed) within the reference 
genome. These algorithms then 
extend these seeds in both 
directions to find the best 
alignment (or alignments) for 
each read.

Burrows–Wheeler 
transform
(BWT). This reorders the 
characters within a sequence, 
which allows for better data 
compression. Many short-read 
aligners implement this 
transform in order to use  
less memory when aligning 
reads to a genome.

Parallel computing
A computer programming 
model for distributing  
data processing across  
multiple processors, so  
that multiple tasks can be 
carried out simultaneously.

insert sizes8. The combination of short and long insert 
libraries should be helpful in capturing transcripts of 
various sizes while also helping to resolve alternatively 
spliced isoforms.

Data pre-processing. Removing artefacts from RNA-
seq data sets before assembly improves the read quality, 
which, in turn, improves the accuracy and computa-
tional efficiency of the assembly. This step is straight-
forward and can be executed using several tools41–44. In 
general, three types of artefacts should be removed from 
raw RNA-seq data: sequencing adaptors43,44, which origi-
nate from failed or short DNA insertions during library 
preparation; low-complexity reads43; and near-identical 
reads that are derived from PCR amplification15. Adaptor 
and low-complexity sequences can lead to misassem-
blies. PCR duplicates are more common in long-insert 
libraries, and their presence can skew mate-pair sta-
tistics that are used by many assemblers for scaffold-
ing. When their identities are known, rRNA and other 
RNA contaminants should also be removed to improve 
assembly speed.

Sequencing errors in NGS reads can be removed or 
corrected by analysing the quality score and/or the k-mer 
frequency. For most NGS data sets, low quality scores 
indicate possible sequencing errors. Sequencing errors 
can also be empirically inferred by looking at the fre-
quencies of each k-mer in the data set. As the same RNA 
molecule is sequenced many times, k-mers without 
errors in them will occur multiple times. By contrast, 
k-mers that occur in the data set at very low frequencies 
are probably sequencing errors or are from transcripts 
with a low abundance. Reads containing these errors 
can be removed, trimmed or corrected to improve the 
assembly quality and to decrease the amount of random 
access memory (RAM) required10,15,42. However, k-mer-
based error removal carries a side effect, in that reads 
derived from rare transcripts may also be removed. This 
should not be a large problem, as the shallow sequenc-
ing depth for these transcripts would not be sufficient to 
assemble them, even if these reads were retained.

Transcriptome assembly strategies
Depending on whether a reference genome assembly is 
available, current transcriptome assembly strategies gen-
erally fall into one of three categories: a reference-based 
strategy, a de novo strategy or a combined strategy that 
merges the two (FIGS 2–4). In the following sections, we 
discuss each of these three strategies in detail, includ-
ing their pros and cons for the assembly of simple and 
complex transcriptomes.

Reference-based strategy
When a reference genome for the target transcriptome 
is available, the transcriptome assembly can be built 
upon it. In general, this strategy — which is known 
as ‘reference-based’ or ‘ab initio’ assembly — involves 
three steps. First, RNA-seq reads are aligned to a refer-
ence genome using a splice-aware aligner, such as Blat45, 
TopHat46, SpliceMap47, MapSplice48 or GSNAP49 (TABLE 1; 
FIG. 2a). Second, overlapping reads from each locus are 

clustered to build a graph representing all possible iso-
forms (FIG. 2b). The final step involves traversing the graph 
to resolve individual isoforms (FIG. 2c,d). Examples of 
methods that use the reference-based strategy include 
Cufflinks20, Scripture16 and others17,50 (TABLE 2).

Splice-aware aligners generally fall into two classes: 
seed-and-extend aligners and Burrows–Wheeler transform 
(BWT) aligners, each of which has clear trade-offs. The 
seed-and-extend algorithms, such as BLAT and GSNAP, 
start by quickly finding a ‘seed’ — a substring of the read 
— that exactly matches the genome and then locally 
extending the match using Smith–Waterman alignment 
algorithms. BWT aligners are optimized to align reads 
with few errors in them and are therefore generally faster 
than seed-and-extend aligners. Each aligner differs in its 
implementation for aligning reads across introns. In gen-
eral, seed-and-extend aligners shift the gaps in the local 
alignment to match known splice sites, whereas BWT 
aligners, such as TopHat, create a database of all possible 
combinations of splicing junctions within a locus and 
then align to this database the reads that failed to align 
to the genome.

After the reads are aligned to the genome, two meth-
ods are typically used for graph construction and tra-
versal16,20. Cufflinks20 creates an overlap graph from all 
of the reads that align to a single locus and then traverses 
this graph to assemble isoforms by finding the minimum 
set of transcripts that ‘explain’ the intron junctions within 
the reads (that is, a minimum path cover of the graph). 
Scripture16, by contrast, constructs a splice graph contain-
ing each base of a chromosome and adds edges (connec-
tions) between bases if there is a read that joins the two 
bases. Scripture then finds all paths through the graph 
that have a statistically significant read coverage. These 
differences in graph construction and traversal methods 
suggest that Cufflinks is more conservative in its choice of 
which transcripts to re-construct, whereas Scripture may 
produce a larger set of transcripts from a locus.

Advantages. The reference-based transcriptome 
assembly strategy has several advantages. Because this 
approach transforms a large assembly problem (mil-
lions of reads) into many smaller assembly problems 
(for example, independent assemblies of each locus 
that contain thousands of reads or less), assembly can 
be solved using parallel computing and can run effi-
ciently on machines with only a few gigabytes of RAM. 
Contamination or sequencing artefacts are not a major 
concern for this strategy, because they are not expected 
to align to the reference genome. More importantly, the 
reference-based strategy is very sensitive and can assem-
ble transcripts of low abundance. Because the underlying 
genome sequence is already known20, small gaps within 
the transcript that have been caused by a lack of read 
coverage can be filled in using the reference sequence17. 
Similarly, this strategy tends to generate longer UTRs, 
which usually have a lower sequencing coverage16. 
Owing to the high sensitivity of this approach, it allows 
users to discover novel transcripts that are not present 
in the current annotation, as in general such transcripts 
have lower expression levels.
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Figure 2 | Overview of the reference-based transcriptome assembly strategy. The steps of the reference-based 
transcriptome strategy are shown using an example of a maize gene (GRMZM2G060216). a | Reads (grey) are first 
splice-aligned to a reference genome. b | A connectivity or splice graph is then constructed to represent all possible 
isoforms at a locus. c,d | Finally, alternative paths through the graph (blue, red, yellow and green) are followed to join 
compatible reads together into isoforms.

Applications. Reference-based transcriptome assembly 
is easier to perform for the simple transcriptomes of bac-
terial, archaeal and lower eukaryotic organisms, as these 
organisms have few introns and little alternative splicing. 
Transcription boundaries can be inferred from regions 
of contiguous read coverage in the genome even with-
out graph construction and traversal37,51,52. Alternative 
transcription start and stop sites can also be inferred 
based on the 5′ cap or poly(A) signals (if cap- or end-
specific experimental protocols are used)51,53. However, 
complications arise owing to the gene-dense nature of 

these genomes. Many genes overlap, resulting in adja-
cent genes being assembled into one transcript, even 
though they are not from a polycistronic RNA. Strand-
specific RNA-seq has successfully been used to separate 
adjacent overlapping genes from opposite strands in the 
genome51,52. Overlapping genes that are transcribed from 
the same strand and that also have comparable expres-
sion levels cannot easily be separated without using  
cap- or end-specific RNA-seq.

Plant and mammalian transcriptomes have complex 
alternative splicing patterns and are difficult to assemble 
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Figure 3 | Overview of the de novo transcriptome assembly strategy.  
a | All substrings of length k (k-mers) are generated from each read.  
b | Each unique k-mer is used to represent a node (or vertex) in the  
De Bruijn graph, and pairs of nodes are connected if shifting a k-mer by 
one character creates an exact k–1 overlap between the two k-mers. 
Note that for non-strand-specific RNA sequencing data sets, the reverse 
complement of each k-mer will also be represented in the graph. Here, a 
simple example using 5-mers is shown. The example illustrates a SNP or 

sequencing error (for example, A/T) and an example of an intron or a 
deletion. Single-nucleotide differences cause ‘bubbles’ of length k in the 
De Brujin graph, whereas introns or deletions introduce a shorter path in 
the graph. c,d | Chains of adjacent nodes in the graph are collapsed into 
a single node when the first node has an out degree of one and the 
second node has an in degree of one. Last, as in the reference-based 
approach, four alternative paths (blue, red, yellow and green) through the 
graph are chosen. e | The isoforms are then assembled.
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Figure 4 | Alternative approaches for combined transcriptome assembly. The left choice depicts the align-then-
assemble strategy, in which reference-based assembly is followed by de novo assembly of reads that failed to align to 
the genome. The right choice depicts the assemble-then-align strategy, in which the reads are first de novo assembled 
and then scaffolded and extended using a reference genome. RNA sequencing (RNA-seq) reads are shown in red, and 
assembled transcripts are shown in orange.

Trans-spliced genes
Genes whose transcripts  
are created by the splicing 
together of two precursor 
mRNAs to form a single  
mature mRNA.

accurately from short reads. Cufflinks20 and Scripture16 
have been developed for efficiently reconstructing tran-
scripts from mammalian-sized data sets. A recent study 
showed that Cufflinks had a higher sensitivity and speci-
ficity than Scripture when detecting previously anno-
tated introns18. A comprehensive comparison of the 
performance of these programs is needed, however, as 
discussed in a later section. Also, it is not known how well 
these programs perform on polyploid plant transcrip-
tomes, in which different alleles from each subgenome  
need to be resolved.

Disadvantages. There are a few drawbacks to the  
reference-based strategy. The success of reference-based 
assemblers depends on the quality of the reference 
genome being used. Many genome assemblies, except 
those of a few model organisms, contain hundreds to 
thousands of misassemblies and large genomic dele-
tions54, which may lead to misassembled or partially 
assembled transcriptomes. Errors introduced by short-
read aligners are also carried over into the assembled 
transcripts. Spliced reads that span large introns can be 
missed because aligners often only search for introns that 
are smaller than a fixed length to reduce the required 
computational power. Also, aligners must successfully 

deal with reads that align equally well to multiple places 
in the genome. If these ‘multi-reads’ are excluded alto-
gether, then this will leave gaps in the reference-based 
assembly in regions that cannot be mapped uniquely. But 
if these reads are included by random assignment, then 
they could lead to the formation of transcripts from a 
region of the genome that has no transcription.

Reference-based transcriptome assembly is, of course, 
not possible without a reference genome. However, 
in some cases, it is possible to use the reference from 
a closely related species. The strawberry reference 
genome, for example, was used to assemble the raspberry 
transcriptome (J. Ward and C. Weber, Cornell Univ.,  
personal communication); however, in these appli-
cations, transcripts from divergent genomic regions 
would be missed. Last, reference-based approaches 
cannot easily assemble trans-spliced genes55. Detection 
of trans-spliced genes has been shown to be crucial for 
understanding the genetic pathways involved in some 
cancers56, such as prostate cancer57.

In summary, reference-based assembly is generally 
preferable for cases in which a high-quality reference 
genome already exists. From our experience, these 
methods are very accurate and sensitive, as they can 
assemble full-length transcripts at a sequencing depth 
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Table 1 | A list of splice-aware short-read aligners

Aligner Paired 
end?

Algorithm 
type 

Finds non-
canonical 
splices?

Independent 
alignments?

Outputs list 
of novel splice 
junctions?

Alignment 
format

Availability Refs

Blat No Seed and 
extend

Yes Yes No PSL http://users.soe.ucsc.edu/~kent/src/ 44

TopHat Yes BWT Yes No Yes BAM http://tophat.cbcb.umd.edu/ 45

GSNAP Yes Seed and 
extend

Yes Yes No SAM http://research-pub.gene.com/gmap/ 48

SpliceMap Yes BWT No Yes Yes SAM http://www.stanford.edu/group/
wonglab/SpliceMap/

46

MapSplice Yes BWT Yes No Yes SAM http://www.netlab.uky.edu/p/bioinfo/
MapSplice

47

BAM, binary alignment/map; BWT, Burrows–Wheeler transform; PSL, pat space layout; SAM, sequence alignment/map.

De Bruijn graph
A directed mathematical 
graph that uses a sequence of 
letters of length k to represent 
nodes. Pairs of nodes are 
connected if shifting a 
sequence by one character 
creates an exact k–1 overlap 
between the two sequences.

Greedily assembling
The use of an algorithm that 
joins overlapping reads 
together by making a series of 
locally optimal solutions. This 
strategy usually leads to a 
globally suboptimal solution.

as low as 10×. The reference-based assembly approach 
can also benefit from the inclusion of longer second-
generation reads, such as 454 reads. Intuitively, longer 
reads are better at capturing the connectivity between 
more exons, which leads to better isoform resolution. 
When combined with gene predictions, reference-based 
assembly represents a powerful tool for comprehensive 
transcriptome annotation.

De novo strategy
The ‘de novo’ transcriptome assembly strategy does not 
use a reference genome: it leverages the redundancy 
of short-read sequencing to find overlaps between the 
reads and assembles them into transcripts. A hand-
ful of de novo transcriptome assemblers have been 
developed (TABLE 2). The Rnnotator15, Multiple-k19 and 
Trans-ABySS18 assemblers follow the same strategy: they 
assemble the data set multiple times using a De Bruijn 
graph-based approach6–8,58 to reconstruct transcripts 
from a broad range of expression levels and then post-
process the assembly to merge contigs and remove 
redundancy (FIG. 3). By contrast, other assemblers (such 
as Trinity59 and Oases) directly traverse the De Bruijn 
graph to assemble each isoform. Whereas most of the 
short-read de novo assemblers created to date were 
developed and optimized using short-read data sets, 
longer second-generation reads, such as 454 reads, can 
also be integrated into de novo transcriptome assemblies, 
which may improve the ability to resolve alternative  
isoforms.

Advantages. Compared to the reference-based strategy, 
de novo transcriptome assembly has several advantages. 
First, it does not depend on a reference genome. For 
most organisms that do not have a high-quality finished 
genome, de novo assembly can provide an initial set of 
transcripts, allowing for RNA-seq expression studies. 
Sometimes, de novo assembly should be performed even 
when a reference genome is available, as it can recover 
transcripts that are transcribed from segments of the 
genome that are missing from the genome assembly, or 
it can detect transcripts from an unknown exogenous 
source. A second advantage of de novo assembly is that 
it does not depend on the correct alignment of reads to 

known splice sites60 or the prediction of novel splicing 
sites, as required by reference-based assemblers. Similarly, 
long introns are not a concern for de novo assemblers. 
Last, trans-spliced transcripts and similar transcripts 
originating from chromosomal rearrangements  
can be assembled using the de novo approach.

Applications. The de novo assembly of bacterial, archaeal 
and lower eukaryotic transcriptomes is straightforward. 
Yeast transcriptomes can be accurately reconstructed 
from short, 35 bp reads; when read coverage is >30×, 
most transcripts can be assembled to their full lengths15. 
Overlapping genes that are transcribed from opposite 
strands in these compact genomes can be resolved by not 
constructing the reverse compliment k-mers in the De 
Bruijn graph (FIG. 3), which ensures that strand specificity 
is not lost when generating the graph. Overlapping genes 
can also be resolved after the assembly step by align-
ing the strand-specific reads to the assembled contigs15. 
For overlapping transcripts from the same strand, the 
de novo strategy faces the same challenge as the refer-
ence-based approach. In theory, differences in sequenc-
ing depth (that is, transcript expression level), signatures 
of transcription start and end sites and coding frames 
can all be used to separate such cases.

De novo assembly of higher eukaryotic transcriptomes 
is much more challenging, not only because of the larger 
data set sizes but also because of the difficulties involved 
in identifying alternatively spliced variants. As millions 
to billions of RNA-seq reads are needed to assemble 
the transcriptome of plants and other large eukary-
otes comprehensively, De Bruijn graph assemblers can  
easily consume hundreds of gigabytes of RAM and  
can run for days to weeks. This problem is alleviated by 
parallel De Bruijn graph implementations7,8 that distrib-
ute the graph over a cluster of computational nodes. Two 
strategies have been adopted to infer transcript-splicing 
isoforms by interrogating the De Bruijn graph. Oases 
traverses the De Bruijn graph by applying paired-end 
read information to assemble isoforms at each locus23,61. 
Trinity59 implements a unique stepwise strategy by first 
greedily assembling a set of unique sequences from the 
reads and then pooling together sets of unique sequences 
that overlap. Trinity then creates an independent  
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De Bruijn graph for each group of sequences and 
assembles isoforms within the group, which can run in 
parallel across a computational cluster to speed up the 
assembly process.

Disadvantages. Beside the fact that the computing 
resources needed to assemble large transcriptomes 
de novo can be overwhelming, there are several aspects 
of the de novo assembly strategy that need to be further 
improved. In general, de novo transcriptome assem-
bly requires a much higher sequencing depth for full-
length transcript assembly than does the reference-based 
assembly strategy. Whereas a reference-based assem-
bler can reconstruct full-length transcripts with <10× 
sequencing coverage18, a de novo assembler usually 
requires more than 30× coverage for the same task15. 
Furthermore, de novo transcriptome assemblers are 
very sensitive to sequencing errors and to the presence 
of chimeric molecules in the data set62. Although algo-
rithms have been developed to correct error-containing 
reads from abundant transcripts, this distinction is more 
difficult to make for reads that are sequenced from 
low-abundance transcripts, as discussed earlier. There 
is currently no effective way to discriminate chimeric 
reads that are artefacts of library preparation from true 
trans-spliced reads. Highly similar transcripts (for exam-
ple, from different alleles or paralogues) are likely to be 
assembled into a single transcript and will require addi-
tional post-assembly steps to resolve. Short repeats pose 
less of a challenge for transcriptome assembly, as repeats 
most often occur within intergenic regions. These 
intergenic regions are not present in the transcriptome, 
and repeats that are present can often be resolved by  
paired-end reads that span the repeated segment.

Combined strategy
Reference-based and de novo strategies can be combined 
to create a more comprehensive transcriptome. By bring-
ing together these two complementary strategies, one 

can take advantage of the high sensitivity of reference-
based assemblers while leveraging the ability of de novo 
assemblers to detect novel and trans-spliced transcripts. 
Generally, the combined assembly strategy can be  
carried out by first either aligning the reads to the refer-
ence genome or by de novo assembling the reads63 (FIG. 4). 
There has been no systematic evaluation to determine 
which strategy is better, and the choice is likely to be 
dependent on several factors, which are discussed below.

Align-then-assemble. Intuitively, when a reference 
genome is available, the combined approach should 
start by assembling the data set using the reference 
genome, followed by de novo assembling the reads that 
failed to align to the genome (FIG. 4). Alternatively, the 
transcripts that result from the reference-based assembly 
could also serve as input to the de novo assembly if the 
de novo assembler supports both long and short reads, 
as do Trans-ABySS and Oases. As mentioned earlier, 
de novo assembly requires more computing resources, 
particularly memory, compared with the alignment-
based reference strategy. With a nearly complete refer-
ence, most of the reads will be assembled, leaving only 
a small fraction of the reads to be de novo assembled. 
This align-then-assemble approach is also the preferred 
method for quickly filtering out unwanted sequences: 
for example, for pathogen detection64, in which reads of 
human origin are filtered out before assembly.

Assemble-then-align. If the quality of the reference 
genome is called into question or if the reference genome 
is from a different but closely related species, de novo  
assembly should be performed first, followed by align-
ment of the contigs to the reference to extend and scaffold 
contigs (FIG. 4). The main advantage of this approach is 
that errors in the genome assembly do not get propagated 
into the assembled transcripts. As mentioned earlier, 
de novo assembly generates more fragmented transcripts 
than reference-based assembly. By aligning both the 

Table 2 | A comparison of the features of existing software for transcriptome assembly

Assembler De novo? Parallelism Support 
for paired-
end reads?

Support for 
stranded 
reads?

Support for 
multiple 
insert sizes?

Outputs 
transcript 
counts?

Software availability Refs

G-Mo.R-Se No None No No  No No http://www.genoscope.cns.fr/externe/
gmorse/ 

17

Cufflinks No MP Yes Yes Yes Yes http://cufflinks.cbcb.umd.edu/ 20

Scripture No None Yes Yes Yes Yes http://www.broadinstitute.org/ 
software/scripture/ 

16

ERANGE No None Yes Yes Yes Yes http://woldlab.caltech.edu/rnaseq 50

Multiple-k Yes None Yes Yes Yes No http://www.surget-groba.ch/downloads/ 19

Rnnotator Yes MP Yes Yes Yes Yes Contact David Gilbert (DEGilbert@lbl.gov) 15

Trans-ABySS Yes MPI Yes No Yes Yes http://www.bcgsc.ca/platform/bioinfo/
software/trans-abyss 

18

Oases Yes MP Yes Yes Yes No http://www.ebi.ac.uk/~zerbino/oases/ -

Trinity Yes MP Yes Yes No Yes http://trinityrnaseq.sourceforge.net/ 59

MP, multiple processor support (assembler takes advantage of many cores from a single computer); MPI, message-passing interface support (assembler runs in 
parallel on multiple computers within a cluster). 
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N50 size
The size at which half of all 
assembled bases reside in 
contigs of this size or longer.

assembled transcripts and the unassembled reads to the 
reference genome, or to a closely related genome, incom-
plete transcripts can be merged or extended to form 
longer, possibly full-length transcripts. Gaps between 
fragments of the same transcript can also be joined and 
filled in using the reference genomic sequence. Note 
that protein sequences can also be used for the align-
ment step if the sequence similarity at the RNA level 
is not sufficient. For example, in a recent study, catfish 
transcripts were aligned to the stickleback proteome 

to achieve substantially longer transcripts (the N50 
size increased by 27%)19. The mosquito transcriptome  
was also scaffolded using this technique22.

No automated software pipelines exist that can carry 
out the combined assembly strategy. A systematic study 
is needed to explore which errors are introduced by com-
bining assembly approaches. In the align-then-assemble 
approach, methods need to be developed to detect the 
errors in the reference-based assemblies to prevent them 
from being incorporated into the final assembly. In the 
assemble-then-align approach, measures must be taken 
to avoid incorrectly joining segments from different 
genes, thus, in turn, avoiding chimaeras.

Choosing a strategy
The choice of transcriptome assembly strategy depends 
on many factors, including the existence or complete-
ness of a reference genome, the availability of sequencing  
and computing resources, the type of data set gener-
ated and, most importantly, the overarching goal of the 
sequencing project. For comprehensive annotation of 
the transcriptome with a reference genome, one should 
make multiple pair-end libraries, sequence the transcrip-
tome at a great depth and then use a combined strat-
egy of reference-based and de novo assembly. Because 
the information provided by the RNA-seq data set is so 
rich, even a partial analysis can quickly lead to impor-
tant discoveries. For example, in a recent study of the 
rice genome65, the use of Cufflinks led to the discovery 
of 649 genes that were missing from the rice annota-
tion but that were found to be differently expressed in 
response to salinity stress. Sometimes, only one aspect 
of the transcriptome needs to be examined. In a study of 
Alzheimer’s disease66, it was hypothesized that alterna-
tive splicing was involved in disease pathogenesis. The 
authors assembled the transcriptome using a reference-
based assembler and discovered two genes with alter-
native start sites and splicing patterns that may help to 
explain the progression of Alzheimer’s disease. As good-
quality reference genomes are increasingly becoming 
available, the reference-based approach is well suited 
for many projects. If no reference genome exists, then a 
de novo assembly approach is the logical choice.

Choosing an assembly program. After an assembly strat-
egy has been chosen, it can still be challenging to decide 
which assembly program to use. In general, most assem-
blers were developed using a particular organism and 
NGS platform and, consequently, the tool is likely to per-
form better on a similar data set. The NGS platform used 
for sequencing may also greatly limit the number of tools 
that can be used on that data type. The SOLiD sequenc-
ing platform, for example, produces reads in colour space, 
which is not explicitly handled by most assembly algo-
rithms. Other platforms have a unique error model that 
is best handled by the assembler from the sequencing ven-
dor. Reads from the 454 platform, for example, are usually 
assembled using Newbler, the software distributed with 
454 sequencing machines. Newbler can correct for long 
stretches of homopolymers of an unknown length, which 
are caused by ambiguities in the signal intensity.

Box 1 | Proposed quality metrics for assessing transcriptome assemblies

We suggest five metrics for evaluating the quality of an assembled transcriptome, given 
a set of reference transcripts that are expressed in the sample and are derived from the 
same transcriptome.

Accuracy
The accuracy metric is defined as the percentage of the correctly assembled bases 
estimated using the set of expressed reference transcripts (N). If reference transcripts 
are not available, then the reference genome can be used as an alternative. Accuracy 
can be formally written as: 

×
Σ
Σ

 where L
i
 is the length of alignment between a reference transcript and an assembled 

transcript T
i
, A

i
 is the correct bases in transcript T

i
, and M represents the number of best 

alignments between assembled transcripts and reference.

Completeness
The completeness metric is defined as the percentage of expressed reference 
transcripts covered by all the assembled transcripts and is written as: 

×
δΣ

where the indicator function, I, represents whether (1) or not (0) C
i
 (the percentage of 

a reference transcript, i, that is covered by assembled transcripts) is greater than some 
arbitrary threshold, δ: for example, 80%.

Contiguity
The contiguity metric is defined as the percentage of expressed reference transcripts 
covered by a single, longest-assembled transcript and is similarly written as: 

×
δΣ

where the indicator function, I, represents whether (1) or not (0) C
i
 (the percentage of 

a reference transcript, i, that is covered by a single, longest-assembled transcript) is 
greater than some arbitrary threshold, δ: for example, 80%.

Chimerism
The percentage of chimaeras that occur owing to misassemblies among all of the 
assembled transcripts. A chimeric transcript is one that contains non-repetitive parts 
from two or more different reference genes. They can arise from biological sources 
(gene fusions or trans-splicing), experimental sources (intermolecular ligation) or 
informatics sources (misassemblies). Misassembled chimeric transcripts can be 
distinguished from true chimaeras by determining whether the number of reads 
spanning the chimeric junction is significant when compared to the number of  
reads spanning other segments of the transcript.

Variant resolution
The percentage of transcript variants assembled. This can be calculated by the average 
of the percentage of assembled variants within the reference set as: 
 

×
Σ

where C
i
 and E

i
 are the number of correctly and incorrectly assembled variants for 

reference gene i, respectively, and V
i
 is the total number of variants for i.
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RACE
An experimental protocol 
termed Rapid Amplification of 
cDNA Ends, which is used to 
determine the start and end 
points of gene transcription.

Cloud computing
The abstraction of underlying 
hardware architectures (for 
example, servers, storage and 
networking) to a shared pool  
of computing resources that 
can be readily provisioned  
and released.

Still, for a given sequencing project, there are sev-
eral choices of assemblers. The most recent compari-
son comes from the authors of Trinity. They compared 
six assembly algorithms and found that the number of 
full-length transcripts assembled in mice was higher 
for reference-based strategies; in yeast, however, two 
de novo assemblers outperformed all of the reference- 
based assemblers. Perhaps more importantly, the study 
found that, in general, reference-based assemblers dis-
covered a greater number of unique splicing patterns 
than did de novo approaches, highlighting the greater 
sensitivity of reference-based assembly. An unbiased 
comparison of the performance of the current tran-
scriptome assemblers is still needed to help users decide 
which assembler to use.

Assessing assembly quality
Although criteria to assess genome assemblies are under 
development54,67, standards for systematically assessing 
the quality of transcriptome assemblies have not been 
established. In a recent study15, such standards were pro-
posed for a simple transcriptome in which alternative 
splicing is rare. Here we propose to extend these metrics 
for both simple and complex transcriptomes. These met-
rics include accuracy, completeness, contiguity and chi-
maera and variant resolution. They allow for the direct 
comparison of different assemblies with each other  
and the optimization of assembly parameters (BOX 1).

All of these metrics require a set of well-established 
expressed transcripts as a reference. Ideally, the refer-
ence set should include both short and long transcripts, 
as long transcripts are particularly useful for estimat-
ing the contiguity and chimerism metrics. It should 
also include transcripts with different expression lev-
els, as weakly expressed transcripts can provide a good 
estimate for completeness, as well as pinpoint novel 
transcripts. Such a reference set can be difficult to find. 
For example, if possible, the reference would contain a 
set of known variants of different expression levels for 
estimating the variant resolution metric. This kind of 
data set is often not available, as the ability to detect 
different expression levels is one of the problems that 
transcriptome assembly is trying to address. A reference 
set of transcripts can also be derived from complemen-
tary experimental methods. For example, the degree to 
which full-length protein-coding genes are assembled 
can be evaluated by checking whether the alternative 
isoforms encode full-length ORFs and by validating 

the isoforms using proteomics assays25. UTRs can be 
evaluated through other experimental approaches, such  
as RACE68.

It is worth noting that optimizing some of these 
metrics may negatively affect others. For example, an 
assembler that creates many spurious overlaps would 
yield a high contiguity metric; however, the number of 
chimeric transcripts due to misassemblies would also be 
high. Exactly which metrics to optimize largely depends 
on the underlying scientific goals.

Conclusions and future perspectives
Advances in both reference-based and de novo tran-
scriptome assembly have expanded RNA-seq applica-
tions to practically any genome. This is particularly 
important, because only a small number of species cur-
rently have a high-quality reference genome available. 
Most species, especially polyploid plants, lack a refer-
ence genome owing to the size and complexity of their 
genomes. Another area that is expected to be substan-
tially improved by the advances in de novo transcriptome 
assembly is metatranscriptomics, in which thousands of 
transcriptomes from an entire microbial community are 
studied simultaneously.

Advances in high-performance computing (HPC) 
will greatly reduce the time required to assemble a large 
transcriptome or metatranscriptome data set. Almost 
all of the currently available transcriptome assemblers 
have some level of built-in parallelism that takes advan-
tage of HPC clusters with thousands of computing cores 
(TABLE 2). Alternatively, cloud computing69 is an attrac-
tive framework for parallel computing, as computing 
resources can be rented as a service on an as-needed basis. 
A cloud-based genome assembler called Contrail has 
already been developed, and hopefully cloud-based tran-
scriptome assemblers will emerge as scalable solutions  
to the large transcriptome assembly problem.

Meanwhile, experimental RNA-seq and sequencing 
protocols are continually improving and should greatly 
reduce the informatics challenges. RNA-seq reads from 
third-generation sequencers, such as PacBio70, are longer 
(up to several kilobases). PacBio sequencers are capable 
of sequencing a single transcript to its full length in a 
single read. If this technology reaches a throughput that 
is comparable to the second-generation technologies, 
then the need for transcriptome assembly will probably 
be eliminated. Hopefully, the future of transcriptome 
assembly will be ‘no assembly required’.
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